The Complexity of Surjective Homomorphism Problems -- a Survey
نویسندگان
چکیده
We survey known results about the complexity of surjective homomorphism problems, studied in the context of related problems in the literature such as list homomorphism, retraction and compaction. In comparison with these problems, surjective homomorphism problems seem to be harder to classify and we examine especially three concrete problems that have arisen from the literature, two of which remain of open complexity.
منابع مشابه
Automatic continuity of surjective $n$-homomorphisms on Banach algebras
In this paper, we show that every surjective $n$-homomorphism ($n$-anti-homomorphism) from a Banach algebra $A$ into a semisimple Banach algebra $B$ is continuous.
متن کاملLocally constrained graph homomorphisms - structure, complexity, and applications
A graph homomorphism is an edge preserving vertex mapping between two graphs. Locally constrained homomorphisms are those that behave well on the neighborhoods of vertices — if the neighborhood of any vertex of the source graph is mapped bijectively (injectively, surjectively) to the neighborhood of its image in the target graph, the homomorphism is called locally bijective (injective, surjecti...
متن کاملLocally Constrained Homomorphisms on Graphs of Bounded Treewidth and Bounded Degree
A homomorphism from a graph G to a graph H is locally bijective, surjective, or injective if its restriction to the neighborhood of every vertex of G is bijective, surjective, or injective, respectively. We prove that the problems of testing whether a given graph G allows a homomorphism to a given graph H that is locally bijective, surjective, or injective, respectively, are NP-complete, even w...
متن کاملThe Complexity of Counting Surjective Homomorphisms and Compactions
A homomorphism from a graph G to a graph H is a function from the vertices of G to the vertices of H that preserves edges. A homomorphism is surjective if it uses all of the vertices of H and it is a compaction if it uses all of the vertices of H and all of the non-loop edges of H . Hell and Nešetřil gave a complete characterisation of the complexity of deciding whether there is a homomorphism ...
متن کاملSurjective H-Colouring over Reflexive Digraphs
The Surjective H-Colouring problem is to test if a given graph allows a vertex-surjective homomorphism to a fixed graph H. The complexity of this problem has been well studied for undirected (partially) reflexive graphs. We introduce endo-triviality, the property of a structure that all of its endomorphisms that do not have range of size 1 are automorphisms, as a means to obtain complexity-theo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 160 شماره
صفحات -
تاریخ انتشار 2012